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Abstract

This paper introduces the explanatory model approach to address
challenges in computing education arising from rapid technological
developments and paradigm shifts, particularly regarding artificial
intelligence and machine learning. Traditional approaches in com-
puting education aim to teach basic concepts derived from the
computer science discipline as they are in order to support stu-
dents’ understanding of these concepts and digital technologies
that implement these concepts. This approach is challenged in top-
ics like machine learning, where the ground truth of the inner
workings and the behaviors of these technologies is not so clear,
making rethinking approaches in computing education necessary.
The explanatory model approach suggests that students learn mod-
els about computational concepts and digital artifacts that help
them understand, explain, and reason about digital technologies.
While drawing on the notion of models in science and science edu-
cation, this approach emphasizes learning and using explanatory
models as a focal point in computing classes. Doing so may help
students make use of these models as tools and enable them to
reflect on and critique different models in various contexts. Ad-
ditionally, this paper discusses how making explanatory models
explicit in research can enrich computing education research and
our discourses and describes avenues for researching explanatory
models as different perspectives on computational concepts.
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1 Introduction

In this paper, we present and discuss the approach of explanatory
models that serve as tools for educational diagnostics, teaching,
and as an area of research in computing education. To introduce
this idea, we use an example of a workshop concept for teacher
education and professional development recently published [3]. In
this workshop, participants were given several tasks and materials
to engage in discussions about the question of what constitutes an
algorithm. The authors observed that over the past decade, partic-
ipants could only partially identify the elements of an algorithm
agreed upon in computer science (CS). They noted being surprised
that almost all student groups overlooked a specific perspective
(i.e. that algorithms target a particular implementation device). The
participants use different conceptions or notions of an algorithm
and can, for example, intensely discuss the analogy of cooking
recipes for algorithms. So, despite a consensus on the meaning of
algorithm and given that this concept can be explained in terms of
its ground truth, people often hold divergent perspectives and con-
ceptions. The explanatory model approach proposed in this paper
provides a theoretical framework as a foundation for describing
different perspectives on such computational concepts or digital
technologies.

From a computing education perspective, interventions about
such topics (e.g., algorithms) often focus on the ultimate goal of
teaching students the correct understanding of the computational
concepts in line with the common understanding within the CS dis-
cipline. Traditional contents in computing classes are defined with
the ground truth of the respective concepts. However, analogies and
similar ideas are sometimes used when understanding the concepts
is challenging. For example, in the context of programming, the
idea of notional machines was introduced as a pedagogical vehicle
to support students in understanding programs and their behavior
during execution [see 17, 48]. Thus, analogies or notional machines
are intended to scaffold and support students in developing a com-
plete and correct understanding of the computational concepts as
the intended learning outcomes. However, nowadays, computing
education involves topics where this ground truth is not so clear;
think, for example, about artificial intelligence (AI) and machine
learning (ML) and what a correct understanding of large language
models could be: it is discussed, for example, whether there are
’sparks of intelligence’ [7] or whether they are rather like ’stochas-
tic parrots’ [5] [for detailed discussions, see 6, 31]. Such cases raise
the question of whether a correct, ground truth understanding is
achievable in computing education (at least in schools). With the
approach presented here, we suggest taking explanatory models as
explicit content and learning them as an end goal in itself instead of
only as a scaffold during the learning process until the complete
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and correct understanding is achieved. Explanatory models provide
explanations of computational concepts or technologies, such as
how large language models work, keeping in mind that sometimes
even different explanations exist. Thus, this approach may suggest
rethinking what exactly it is that we teach computing students in
K-12 (and maybe beyond).

The introductory example should also hint at another perspec-
tive on explanatory models, that is, to make the explanatory models
used in computing education research explicit. This can facilitate
comparisons across studies about the same or similar explanatory
models (e.g., of the concept of algorithms) but different pedagogi-
cal approaches. For example, this approach allows us to say that
people are using different explanatory models (e.g., of algorithms)
and hence argue differently about questions like whether cooking
recipes can be understood as algorithms. Additionally, it could al-
low us to relate two interventions or educational tools that aim
to teach the same explanatory model but have entirely different
pedagogical approaches. Being aware of the explanatory models
used and explicitly communicating them could enhance discourses
within the computing education community and contribute to cu-
mulative knowledge and theory building. Furthermore, explicating
explanatory models about computational concepts and digital tech-
nologies could also provide lenses on research opportunities, such
as systematically examining the explanatory models students hold
about specific computational concepts.

This idea of explicitly teaching and researching explanatory
models leads to a third perspective on the approach presented here:
the notion of models should be considered. In science and science
education, using models has a long tradition, including research on
teaching and learning about and with models. This research can
support discussions on teaching explanatory models in computing
education, even if the distinctions between science education and
computing education should be taken into account. An essential
aspect of this research is to be aware that models are not full images
of reality but are selective views, covering specific aspects while
leaving out others [see 12]. For example, an explanatory model for
computational concepts could capture some essential features or
dynamics, allowing students to test hypotheses and explore the
behavior of digital artifacts. In doing so, an explanatory model is
related to one specific purpose so that such a model’s view on a
computational concept or digital artifact could be suitable for a
particular use case but not for other contexts.

Overall, the idea of explanatory models extends across different
perspectives on computing education, its discourses, and research.
In the following, we discuss the theoretical foundation before delv-
ing deeper into describing the explanatory model approach and the
perspectives mentioned. After proposing the explanatory model
approach, we reflect on promising avenues for further research and
call for more discussions on explanatory models, which may be
currently used implicitly in computing education research.

2 Background and Context

Current challenges for computing education posed by new topics
like AI and ML are briefly discussed below, which leads to the idea
of teaching ’explanatory models’, providing explanations for com-
putational concepts, digital artifacts, or socio-technical systems. We
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also discuss the relation to notional machines as a similar concept
to explanatory models and then reflect on the notion of models
and their use and conception in science and science education. We
believe that respective experiences from science education can be
useful for explanatory models for computing education.

2.1 Challenges and Paradigm Shifts in AI
education

Recent discussions in computing education research demonstrate
uncertainties about which ideas, concepts and perceptions should be
taught regarding topics like ML [e.g., 22, 43, 49]. These challenges
are further underscored as understanding these technologies in
detail is problematic within CS discipline too, resulting in research
areas trying to find explanations for ML models (e.g., see discussions
about explainable AI). Below, we discuss these challenges as a
foundation for the development of the explanatory model approach.

Increasing complexity and decreasing comprehensibility. The chal-
lenges in understanding Al systems and comprehending their spe-
cific outputs become clear when taking into account the fast-growing
research field about making Al systems (particularly those using ML
techniques) understandable to people: explainable AI (XAI) [for an
overview, see 2]. XAl research reports that Al systems with higher
accuracy are less likely to be comprehensible and explainable [see
1, 23]. The current technological developments make understand-
ing digital technologies increasingly complex and less transparent,
while their implementation in daily life makes comprehensibility
increasingly necessary.

The algorithms and the code for designing Al systems may be
simple and comprehensible, but the resulting ML models can still
be very complex and are rather black-boxes [32, 42]. Notably, the
algorithms and codes play an important but relatively small role in
ML systems [46]. Thus, understanding the code does not sufficiently
explain the behavior of such systems. It also requires considering
the role of data (e.g., training data selection) and their impact on the
system’s behavior. Rahwan et al. [42] discuss different aspects of the
complexity of such systems, including the high dimensionalities of
ML models and the massive amounts of training data, imperfections
in data, or the fact that the workings for generating output are
learned by an ML system and not designed by the designer. Hence,
Al systems and especially data-driven technologies are hard to
understand. Knowing underlying conceptual ideas implemented
in these technologies is probably insufficient for understanding
them and their behavior. Thus, learning abstract concepts may not
necessarily help students understand such technologies.

This demonstrates that the approaches we use to understand
traditional algorithmic systems may not be sufficient for under-
standing data-driven systems, raising the question of what should
be taught to students to effectively support their understanding of
such technologies.

Paradigm shift in teaching about digital technologies. Similar dis-
cussions about differences in teaching about algorithmic systems
and data-driven approaches can also be found in computing edu-
cation research. For example, Tedre et al. [49] discuss differences
in problem-solving and designing algorithmic solutions compared
to data-driven problem-solving, highlighting paradigm shifts from
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traditional algorithms to ML. In recent years, many educational
approaches for teaching students about Al concepts have been de-
veloped and discussed [e.g., 9, 22, 34, 43]. A review from Rizvi et
al. [43] has shown that most of the materials published in articles
about K-12 Al education do not cover concepts on the engines level
(i.e. the concrete and formal underlying functionalities of Al algo-
rithms). Instead, current materials seem to focus on teaching ML
models (e.g., training and testing such models) and designing small
Al-based applications [see 43]. This indicates that many educational
approaches to Al education currently focus on explaining ML tech-
nologies and respective computational concepts instead of seeking
to teach students about technical "ground truth" on an engine level.
A similar observation can be made regarding one promising trend
of using and developing educational tools, offering easy options for
designing ML applications without requiring prior programming
experiences [e.g., 24, 28, 55] [for an overview, see 21]. In doing so,
students get insights on some aspects of the black-boxes of ML sys-
tems, while teaching focuses on a more abstract level, like training
and testing ML models.

These debates on different paradigms and levels of teaching
about Al and using educational tools seemingly focus on different
contents and pedagogic approaches. However, there is probably
an underlying question related to the idea of explanatory models:
Which aspects of Al and ML should students learn? The different
approaches, levels, and tools may target the same or different ex-
planatory models. An idea argued in recent discussions is to build
on our experiences from computing education about traditional,
algorithmic systems, that is, adopting respective educational ap-
proaches to support students in developing mental models about
Al systems [22]. For example, it is suggested to develop notional
machines for Al systems [49]. Hence, we discuss this idea below
as a foundation for developing the explanatory model approach,
even if notional machines and explanatory models have significant
differences, as we argue later.

2.2 Notional Machines as Vehicles to
Understand Programs

The concept of notional machines is used in programming educa-
tion and is to a certain extent similar to explanatory models [for
overviews, see 17, 48]. A notional machine helps learners under-
stand how programs and programming languages work by explain-
ing what happens during program execution. It is a model for an
idealized and conceptual computer [15] used as "a pedagogic device
to assist the understanding of some aspect of programs or program-
ming" [17]. It supports explaining programs, their behavior, and
user-understandable semantics. For instance, notional machines
can be analogies, such as boxes representing variables [for more ex-
amples, see 17]. Usually, a notional machine covers specific aspects
(e.g., variables) but omits others. Based on mental model theory,
Sorva [48] emphasizes explicitly teaching national machines rather
than having them as implicit goals. Similarly, Munasinghe et al.
[37] note that notional machines are often taught implicitly as ve-
hicles or scaffolds rather than explicit models. This aligns with the
mentioned perspective that often understanding the real ground
truth is seen as the ultimate goal for computing education instead
of learning about models: Even if notional machines are an example
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of teaching and learning models, they merely serve as pedagogical
vehicles or didactic means to achieve a correct understanding, but
not as the goal in itself. Understanding traditional algorithms led
to grasping the ground truth (e.g., how variables work), making the
need for models as end goals less critical, similar to the engine level
of learning about AI described in the SEAME framework [47] [see
also 43]. However, this seems to be changing with ML technolo-
gies (or even complex systems), where it is not so clear how they
work in the smallest detail. Regarding Al education, developing
notional machines for Al systems is suggested, although these may
differ fundamentally from traditional notional machines [51]. For
example, Munasinghe et al. [37] envision more abstract notional
machines for Al systems.

Notional machines could be understood as one particular type
of explanatory models related to program executions and their be-
havior. However, teaching notional machines focuses on providing
a scaffold rather than primarily teaching models, in contrast to the
idea of teaching explanatory models. While arguing for teaching
explanatory models, a foundation of a notion of models is needed
to be aware of essential characteristics of explanatory models.

2.3 Notion of ’Model’ and its Role in Science
and Science Education

In science research, developing models is a fundamental scientific
practice used for reasoning and sense-making [40]. For instance,
think about well-known models in natural sciences, like the mod-
els of atoms by Thomson, Rutherford, and Bohr or the DNA helix
model by Watson and Crick. According to Osborne [39], models
help when considered phenomena are not directly accessible (e.g.,
when they are too big or small to be observable). Due to the integral
role of models in natural sciences, teaching and learning with and
about models is essential in science education to reflect the scien-
tific disciplines authentically [e.g., 39, 40, 53]. Science education
research provides insights regarding teaching and learning with
and about models, including several challenges [12]. For example,
understanding models as selective and idealized representations of
something with a specific state of scientific knowledge (and maybe
resulting in models showing to be limited or outdated) rather than
true images of reality can be challenging for learners [see 12].
While a broad discussion of the term 'model’ exceeds this paper’s
scope, we note some insightful perspectives involving different dis-
ciplines concerned with the notion and meaning of models [for
historical overviews, see 35]. The mathematician and theoretical
computer scientist Mahr [35] describes models as representations
that can be simplified and abstracted but could include additional
properties. He introduces the ’cargo’ idea, describing that models
convey information or knowledge about what they are meant to be
used for. Regarding natural sciences, models are often characterized
with two dimensions: they are representations of something and
serving as tools for something [19, 40, 53]. They allow for illus-
trating, explaining, and communicating about phenomena. This
scientific function of models is described with models as media
(referring to the of -perspective) [53]. Additionally, models provide
predictions for phenomena so that they can be used as a tool for
generating ideas and knowledge about the considered phenomena
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(referring to the for-perspective) [53]. Thus, models have a repre-
sentative perspective and an explanatory and predictive function.
Notably, the development and use of a model is related to specific
purposes and intentions [18]. Passmore, Gouvea, and Giere [40]
argue that the of-for-distinction can support to underscore the
functional perspective of using models, highlighting that science
education is not limited to the fact that models are one more thing
students need to learn and reproduce but instead being enabled
to use models as tools for reasoning and sense-making. However,
science education practice often focuses on the representative per-
spective and neglects functional perspectives [19]. From a comput-
ing education view, this functional perspective could relate to using
models to explain computational concepts and to explore, explain,
and reason about specific digital artifacts and their inner workings.

In science, various types of models are used, such as mathemat-
ical, theoretical, chemical, or analogical models [see 11]. As one
type, Clement [11] describes explanatory models as explaining how
and why something works. In addition, scientific, theoretical, and
hypothesized models provide views on the world, but they should
be distinct from just observational models (e.g., measurements or
representative descriptions). Respective models used in science ed-
ucation are often developed, tested, and refined by scientists over
time (e.g., involving experiments).

When relating the role of models in science (education) to com-
puting education, crucial differences between these disciplines
should be noted. For example, science education considers natural
phenomena, while computing education is about digital artifacts,
referring to objects invented and made by humans. We discuss this
later in more detail.

3 Explanatory Models

In this section, we describe the explanatory model approach, explain
the term, and discuss its notion. Figure 1 provides an overview of
its characteristics. Then, we outline their potential role in teaching
and learning processes and computing education research.

3.1 Characterization of Explanatory Models

What is an explanatory model? An explanatory modelis a concep-
tual model that is an idealized representation of computing objects,
such as computational concepts, digital artifacts, or socio-technical
systems (i.e. a composition of human beings and digital artifacts).
Such models should fulfill educational purposes of providing spe-
cific perspectives on and explanations of computational concepts
and digital artifacts and their behavior. For example, an explanatory
model for data-driven technologies can focus on the role of data
[see 25, 26]. They allow students to explain computational concepts
or explore and make sense of inner workings and contextual effects
of specific digital artifacts.

Why do we use the term ‘explanatory models’? While traditional
concepts and algorithmic systems could be explained in full detail
with the technical truth, this is challenged by the complexity of
real-life digital artifacts, current technological developments, and
paradigm shifts in the discipline (e.g., regarding Al and ML). Based
on the notion of models discussed earlier, the following perspec-
tives could be adopted (especially from the of-for-distinction): First,
explanatory models represent computational concepts and digital
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artifacts, thereby focusing on specific aspects. Frameworks from
computing education could assist in this regard, for example, to pro-
vide different levels of consideration on Al systems [e.g., 47] or a set
of various aspects for programs [e.g., 33, 44]. This representational
perspective of explanatory models can cover different degrees of
complexity and technical precision. For example, an explanatory
model of large language models could use the metaphor of stochas-
tic parrots [see 5]. Second, explanatory models serve as tools for
exploring and explaining digital artifacts, which involves making
sense of their inner workings and reasoning about their behavior.
From this perspective, an explanatory model highlights different
aspects of digital artifacts and serves as a tool for uncovering in-
ner workings of specific technologies. For example, a mentioned
explanatory model of a large language model could then be used to
explore and explain the outputs of a specific text generation tool.

Even if building on the notion of models from science, the rep-
resentational view of models in computing education differs from
that in natural sciences. For example, when considering a stone (as
a natural object), the question of whether it is a good stone makes
no sense as it is just a stone; in contrast, digital artifacts are based
on human decisions and values so such a question makes sense.
This example illustrates that explanatory models related to digital
artifacts or socio-technical systems require other characteristics
than models in science and science education. The dual nature the-
ory supports this characteristic property of explanatory models,
which stems from philosophical debates on the nature of techni-
cal artifacts and is used, for example, in computing or technology
education [e.g., 10, 44]. While comparing explaining natural phe-
nomena and digital artifacts, de Ridder [13] emphasizes that digital
artifacts should be considered with the human agency, while this is
different about natural phenomena. According to this theory, two
views can be referred to when understanding or explaining digital
artifacts [30, 44, 54]. While the perspective of the architecture or
structure of digital artifacts refers to its inner workings (e.g., the
algorithmic workings), the perspective of the relevance is related
to an interpretation of the intentions, meanings, and social effects
of the digital artifact (e.g., why it was designed as it is, or how
can it be used). Notably, different aspects of a digital artifact (e.g.,
an algorithm) can be described from both perspectives. The the-
ory states that digital artifacts are not neutral as different human
purposes and intentions are included. The two perspectives are
interrelated so that understanding the relevance is necessary to
comprehend inner workings; conversely, understanding the archi-
tecture is a prerequisite for evaluating the relevance [see 30, 45].
Accordingly, it is argued that a comprehensive understanding of
a digital artifact involves both perspectives. For example, digital
artifacts often impact individuals and society. Rahwan et al. [42]
describe several examples of potential influences of Al systems. For
instance, systems choose information (or misinformation) people
see in their news feeds, which can influence individuals’ behaviors,
emotions, and opinions [29, 52]. Accordingly, models about digital
artifacts should not be representations of inner workings alone (the
architecture perspective) but also - and this is important - should
provide explanations for their functions, meanings, and impacts
(the relevance perspective).
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In summary, explanatory models always draw on architecture
and relevance perspectives to highlight the interpretative and ex-
planatory functions. This allows students to reason about digital
artifacts, their behavior, and their influences on individuals and
society.

Important difference between science and computing. Models in
natural science and science education are developed and used to un-
derstand natural phenomena. In contrast, in computing education,
models and modeling are used to understand and develop digital
artifacts rather than primarily to understand given phenomena
of the analog world. (Note that some digital artifacts are indeed
designed to examine and understand natural phenomena, such as
computational simulations, but this specific case deserves in-depth
discussion [e.g., 41].) However, designing digital artifacts in com-
puting also impacts the analog world, which is also considered in
computing but always in relation to digital artifacts. Thus, models
for computing education have other and additional functions than
those known in science. Nevertheless, the experiences in teaching
and learning with and about models in science education can be
relevant to teaching and learning explanatory models, especially
those related to technologies we struggle to understand and explain.
This is similar to the argumentation of Rahwan et al. [42], who ar-
gue for adopting methods from natural sciences to investigate and
understand the behavior of Al systems.

3.2 Explanatory Models in Teaching and
Learning Processes

Based on the characteristics of explanatory models, we discuss use
cases for teaching and learning practice and research in computing
education.

Students learn explanatory models. Similarly to notional ma-
chines that are argued to be explicitly taught [see 17, 48], explana-
tory models are intended to be made explicit, that is, learning them
becomes a concrete learning goal. However, while notional ma-
chines are meant as scaffolds or vehicles to support students in
learning the ground truth of algorithmic programs, explanatory
models are meant as a goal in themselves, including teaching stu-
dents about these models and enabling them to work with them.
Thereby, explanatory models aim to support students’ metacogni-
tive thinking processes, such as reflecting on different perspectives
on computational concepts or the nature of computing; similarly,
in science education, learning about and with models is argued as
serving metacognitive tools [e.g., 12]. They provide a perspective or
lens on computational concepts and digital artifacts. For example,
this allows them to explain abstract concepts (e.g., algorithms or
large language models) or to explore, explain, and reason about
specific digital artifacts, their inner workings, and their behavior
(e.g., particular chatbots). This could include using an explanatory
model as a lens on large-language model applications, allowing
them to find explanations for their behavior, such as reasoning
about the generated text. Explanatory models can also be used for
designing digital artifacts, such as applying an explanatory model
of neural networks to design an ML application. Explicitly learning
and using explanatory models also involves learning about their
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purposes, allowing students to critique and reflect on the contexts
in which they can use a model or when it may not be applicable.

Educators use explanatory models. Following explanatory models
as learning content, this approach can also help educators design
teaching units and materials accordingly. Teaching about explana-
tory models is meant to support students in forming respective
mental models, which are mental constructs (i.e. knowledge struc-
ture), for example, related to systems or algorithmic processes [27].
Mental model theory describes how people perceive, explain, and
predict the world [20]. It is often used in computing education
research, like in the approach of notional machines [e.g., 17] or
when examining students’ conceptions about topics like Al [e.g.,
36]. While mental models are personal and internal representations,
the external counterparts are conceptual models [20, 38, 48]; like
explanatory models. Their representations could include analogies,
artifacts, or visual explanations of systems [38, 48]. Conceptual
models can be useful in teaching to explain structures and inner
workings of digital artifacts [48]. For example, a study from Ben-Ari
and Yeshno [4] indicates that learning a conceptual model about
internal word-processing software supported school students in
developing conceptual understanding and interacting with the soft-
ware. Similarly, a study suggests that learning an explanatory model
can help students understand everyday technologies [26]. However,
based on experiences in science education, we should note that
presenting conceptual models does not necessarily lead to adequate
mental models as students often lack knowledge from the discipline
or the domain to interpret the presented models [20].

This relation of explanatory models to intended mental models
leads us to their potential support for diagnosing students’ con-
ceptions. Research on students’ perspectives on computational
concepts or their preconceptions can be understood as examin-
ing explanatory models students know, such as in the study about
algorithms mentioned before [see 3]. This can help teachers choose
explanatory models to introduce in a learning group. Addition-
ally, explicating these explanatory models can help students reason
about computational concepts. For example, using a recipe analogy
as an explanatory model of algorithms could include discussing
which aspects of algorithms this analogy could adequately repre-
sent (e.g., step-wise operations) and where it has its limitations (e.g.,
loops may then be problematic).

While using notional machines or analogies as vehicles to teach
computational concepts is not new, the presented approach calls
for making explanatory models explicit and taking learning and
using them as one of the primary learning goals. Then, explana-
tory models serve as learning content but also provide diagnostic
functions and can support developing interventions.

3.3 Explanatory Models in Computing
Education Research

In addition to using explanatory models in computing education
practice, we envision further potential use in research practice. The
diagnostic function of explanatory models mentioned above also
applies to research practice, such as studies on students’ concep-
tions of computational concepts. Thus, explanatory models can
serve as lenses for empirical research, inspiring the development of
respective research instruments. Explicating explanatory models
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Figure 1: Overview of the perspectives of explanatory models based on the of-for-distinction discussed regarding the notion of
models. Explanatory models (1) are representations of computational concepts, digital artifacts, or socio-technical systems
while covering architecture and relevance perspectives, and (2) serve as tools for (a) teaching and learning processes and (b)

research.

used in intervention studies could benefit communication about
rationales and pedagogical ideas and, hence, cumulative knowledge
building. For example, clarifying the explanatory model taught in
a study’s intervention could help researchers compare the results
with other studies on the same explanatory model but with other
pedagogical approaches.

Discussions on explanatory models are also related to discussing
the nature of the CS discipline and computing education (e.g.,
caused by the fundamental changes regarding new technologies).
The approach challenges the idea that we can teach and explain
outcomes of the discipline based on reductions and by breaking
them down to the smallest algorithmic details. We may need to
rethink whether this approach holds for new computing topics.
Practices of working with explanatory models could imply that
computing education may need to focus more on scientific tradi-
tions in computing education [see 50], also in conveying a coherent
and authentic image of the discipline.

4 Reflection and Conclusion

This paper introduced the explanatory model approach and charac-
terized what constitutes an explanatory model, targeting challenges
in computing education arising from rapid technological changes
and paradigm shifts, particularly in areas like ML, where behaviors
of digital artifacts cannot be fully understood by algorithms alone.
Explanatory models serve as tools for understanding and explain-
ing computational concepts and exploring, explaining, designing,
reasoning about, and reflecting on specific digital artifacts. While
analogies and abstractions are familiar in computing education as
pedagogical vehicles, we propose that teaching explanatory models
as an end goal in itself has unique benefits. We argue that system-
atically developing and making these models explicit can enhance
both teaching and research in computing education (at least at
school level). However, this approach also raises open questions

that require further discussion and research. Below, we outline and
explore some of them in more detail.

Model competencies and model thinking. This paper advocates for
explicitly teaching explanatory models and communicating those
used in computing education research (e.g., empirical studies). If we
pursue this direction, students learn about and with explanatory
models and use them as tools for different activities. This raises the
question of whether we then need to teach model competencies and
model thinking. Research in science education may provide valuable
insights about teaching and learning models. In this context, it is
criticized that models often are not adequately taught, such as the
purposes of the models are often not sufficiently explained, which
hinders students from reflecting on and critiquing models even if
these are essential skills in working with models [e.g., 12, 19, 53].
Respective frameworks in science education addressing such skills
of working with models could be considered, such as the framework
for modeling competence [53] that comprises three levels: The
first is about abilities to replicate or illustrate phenomena. The
second includes abilities to use models in representation functions,
that is, using models to describe, explain, and communicate about
phenomena. The last adds functional perspectives of using models
for something, such as a tool to derive predictions or knowledge
about phenomena.

Further research is needed to explore to what extent such a
framework from science education could be adopted to computing-
specific explanatory models, taking into account the critical differ-
ences between computing and science education discussed earlier.

Methods and approaches for teaching and learning about models.
Explicitly teaching explanatory models in schools also leads to the
question of which methods and approaches are suitable and effec-
tive to teach models (e.g., based on research on notional machines)
or can be beneficial to import and adapt from other disciplines. Re-
search that explores computing-specific methods and approaches
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for effectively teaching students about explanatory models to sup-
port meta-cognitive processes and enable them to work with such
models is needed. In this vein, the computing-specific functions for
which students could use explanatory models should be explored.
This may involve research on using explanatory models for (1) ex-
plaining, reconstructing, and reflecting on digital artifacts, and (2)
modeling and designing digital artifacts. In other words, it would
be fruitful to examine the use of explanatory models for different
activities in computing education [see 26], such as described in
approaches like computational empowerment [e.g., 14].

Development of explanatory models. Another question concerns
thinking about where the explanatory models might come from.
An intuitive approach would be to look for useful models from
the CS discipline. However, explanatory models may be designed
from an educational perspective, involving interpretative views
in addition to objectively describing the inner workings of digital
technologies. Thus, we believe that educational frameworks could
be useful for designing explanatory models, like following the idea
of educational reconstruction [see 16]. Nevertheless, related work
is also done in the CS discipline, such as in the context of XAl,
which involves developing techniques for explaining ML systems.
Additionally, it could also involve other disciplines, such as social
sciences, which also seek explanations for Al technologies [e.g.,
8]. Similarly, Rahwan et al. [42] discuss using interdisciplinary
approaches and methods from other disciplines to examine and
explain Al systems behaviors.

Concluding remarks. Computer science is rapidly changing, lead-
ing to significant implications for computing education that we aim
to address with the explanatory model approach. Traditional algo-
rithmic systems may be explained in ’complete’ detail with ground
truth, but complex real-world systems and Al technologies chal-
lenge this clarity. Understanding and explaining such technologies
is problematic in detail (e.g., see discussions around XAI). This high-
lights the need for explanatory models. In this vein, the presented
approach is intended to encourage rethinking the nature of the com-
puting education discipline, as past methods and approaches may
not suffice for new technologies and concepts, especially thinking
about challenges and paradigm shifts brought by AI. We propose
focusing on explanatory models as concrete goals in computing
education and a field in computing education research. While mod-
els are not new in computing education at all, they are often not
treated as central learning content or even made explicit. We advo-
cate for making explanatory models (a) explicit as teaching content
and goals and (b) explicit in research, encompassing materials and
tools, approaches, and empirical studies to clarify discussions on
what is being measured and examined and understanding of var-
ious perspectives on computational concepts. As a consequence
of developing explanatory models, it is necessary to decide which
aspects should be covered by the explanatory models we teach (e.g.,
selecting aspects that are easy to comprehend for students [see
24]). According to the characterization of explanatory models, the
question arises which purposes, aims, values, and norms should be
included in these models, which requires a respective discourse in
our discipline.

Koli Calling *24, November 12-17, 2024, Koli, Finland
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