n)
T Identifying K-12 Students’ Approaches to Using Worked

Examples for Epistemic Programming

Sven Hiising”
sven.huesing@uni-paderborn.de
Paderborn University
Paderborn, Germany

Carsten Schulte
carsten.schulte@uni-paderborn.de
Paderborn University
Paderborn, Germany

ABSTRACT

Programming, when practised in an epistemic sense, can be used
as a means of gaining insight into areas of personal interest that ex-
tend beyond the programming domain itself, e.g. by analysing data
or running a simulation. However, novice programmers need sup-
port in conducting such personal epistemic programming projects.
This paper reports on an eye-tracking study, aimed at identifying
different approaches to using worked examples in this context.
The study, conducted with 26 participants from K-12 using SMI
REDn eye trackers, aims to uncover different types of (heuristic and
presumably epistemic) approaches. In this context, we present an
approach to clustering and aggregating scan paths through using
dynamic time warping. The results show five different clusters with
different behaviours: While some participants had several linear
reading phases in the worked example, others focused more on
parts that were necessary for their individual efforts. This could be
an indication of epistemic programming.

CCS CONCEPTS

« Social and professional topics — K-12 education; « Applied
computing — Interactive learning environments.

KEYWORDS

Epistemic Programming, Worked Examples, Eye Tracking, Scan-
Path, Dynamic Time Warping, K-12, Programming Education

ACM Reference Format:

Sven Hiising, Séren Sparmann, Carsten Schulte, and Mario Bolte. 2024. Iden-
tifying K-12 Students’ Approaches to Using Worked Examples for Epistemic
Programming. In 2024 Symposium on Eye Tracking Research and Applications
(ETRA °24), June 04-07, 2024, Glasgow, United Kingdom. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3649902.3655094

“Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution International
4.0 License.

ETRA °24, June 04-07, 2024, Glasgow, United Kingdom
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0607-3/24/06
https://doi.org/10.1145/3649902.3655094

Soéren Sparmann”
soeren.sparmann@uni-paderborn.de
Paderborn University
Paderborn, Germany

Mario Bolte
mario.bolte@uni-paderborn.de
Paderborn University
Paderborn, Germany

1 INTRODUCTION

In many disciplines, programming is used to gain knowledge and
insight [Odden et al. 2022; Wilensky et al. 2014]. Here, the pro-
gramming process results in an intertwined interaction between
cognition and programming [Hiising et al. 2023] in the context
of which learners can explore areas of personal interest and find
answers to individually relevant questions. This perspective on
programming is denoted as epistemic programming [Hiising et al.
2023] and is currently being investigated as an approach for pro-
gramming novices and K-12 students [Hiising et al. 2024].
However, as programming can be difficult for novices to learn
[Robins et al. 2003], students need to be supported in their epis-
temic programming endeavours. A recent study using retrospective
think-aloud interviews has shown that worked examples can be
used as such guidance to support novice programmers in engaging
in epistemic programming [Hising et al. 2024]. A worked example
denotes a worked out (programming) solution for a project sim-
ilar to the one at hand [Atkinson et al. 2000; Mulder et al. 2014;
Sweller and Cooper 1985; Sweller et al. 1998]. Students can use it as
a guidance or as a basis for their own processes by using, adapting
or expanding parts of it (also see the Use-Modify-Create approach
[Lee et al. 2011]). In particular, so-called heuristic worked examples
[Reiss and Renkl 2002] seem to be particularly appropriate for epis-
temic programming as they are supposed to convey the heuristic
process behind the choice of specific implemented actions [Mulder
et al. 2014]. While there is already research on using worked ex-
amples for teaching programming and in programming activities
[Muldner et al. 2023; Rahman and du Boulay 2010], we want to in-
vestigate whether they can be beneficial for epistemic programming
projects and how they might be used in this regard. Therefore, we
want to identify and analyse different approaches to using worked
examples in this context. In other words, we want to reveal dif-
ferent types of (heuristic and presumably epistemic) approaches
and want to learn more about how learners interact with worked
examples, and which approaches are beneficial for engaging in an
epistemic programming practice. Since analysing eye-tracking data
might potentially be a suitable approach to investigate cognitive
processes within programming endeavours [Busjahn et al. 2014;
Just and Carpenter 1976], we developed an eye-tracking based ap-
proach for examining K-12 students’ processes of utilising worked
examples within epistemic programming projects. In this context,
we analyse, in particular, the extent to which students are guided

https://orcid.org/0000-0001-9553-8257
https://orcid.org/0009-0003-4647-7533
https://orcid.org/0000-0002-3009-4904
https://orcid.org/0009-0001-1909-9851
https://doi.org/10.1145/3649902.3655094
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3649902.3655094
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649902.3655094&domain=pdf&date_stamp=2024-06-04

ETRA °24, June 04-07, 2024, Glasgow, United Kingdom

by the structure of the worked example, the extent to which they
consider certain sections in it, and how the process of reading the
worked example is intertwined with the programming process.
Following this approach, we report on a first analysis of stu-
dents’ behaviour in their epistemic programming endeavours in
this paper. Therefore, we conducted an eye tracking experiment in
which the participants were given a heuristic worked example to
solve a programming task. The task description was designed to
encourage an epistemic programming practice. We used eye track-
ing to determine which parts of the notebook participants were
looking at at any given time. To identify students’ approaches, we
applied Dynamic Time Warping (DTW) [Kumar et al. 2019; Sakoe
and Chiba 1978] to cluster and aggregate students’ scan paths.

2 BACKGROUND

In this section, we provide a background to the concept of epistemic
programming processes and the use of (heuristic) worked exam-
ples in this context, before elaborating on analysing programming
processes through eye-tracking.

2.1 Worked Examples to Support Epistemic
Programming Processes

As previously mentioned, programming offers various possibili-
ties beyond software development. One such possibility relates
to gaining insights through programming that extend beyond the
programming domain itself, a practice already employed in various
disciplines [Odden et al. 2022; Wilensky et al. 2014]. Epistemic pro-
gramming [Hising et al. 2023] aims at addressing this perspective
for novice programmers in particular, in order to teach program-
ming as a means of exploring personal interests. However, since
learning to program might potentially be difficult [Robins et al.
2003], beginner programmers need to be supported in their in-
tertwined cognitive and programming processes. Here, worked
examples [Atkinson et al. 2000] appear to be a promising approach
[Husing et al. 2024], serving as a template for the programming
process. Using worked examples is commonly known within pro-
gramming education research [Muldner et al. 2023]. More generally,
[Mulder et al. 2014] describe studying worked examples as being
beneficial regarding algorithmic solution processes [Atkinson et al.
2000; Sweller et al. 2011]. Regarding inquiry-based learning, which
is aspired in the epistemic programming approach, the authors
describe that so-called heuristic worked examples [Reiss and Renkl
2002] might be particularly applicable in order to exemplify such
inquiry-driven problem-solving processes and offer a guidance for
students [Mulder et al. 2014]. Regarding epistemic programming
endeavours, we want to identify a suitable design for worked exam-
ples, so that 1) programming novices are provided with actual code,
they can use, adapt and expand [Lee et al. 2011] and 2) people, inex-
perienced with strategies regarding discipline-specific investigation
processes are provided with suitable heuristic approaches [Mulder
et al. 2014]. In order to meet these requirements, we assume that a
computational essay [DiSessa 2000; Odden et al. 2022; Perez and
Granger 2015; Wolfram 2017] could be used as a worked example in
order to "help students think and work in a particular area, modified
appropriately by the student for her expressive purposes" [DiSessa
2000, p. 185]. For identifying programming novices’ approaches of

Husing et al.

utilising such worked examples, analysing eye-tracking data ap-
pears to be a suitable method for having a look into the intertwined
cognitive and programming processes [Busjahn et al. 2014; Just and
Carpenter 1976].

2.2 Analysing Programming Processes using
Eye Tracking

The analysis of eye movement can provide insights into various
aspects of programming cognition, such as code comprehension,
debugging, problem-solving strategies, cognitive load, or program-
ming expertise [Bednarik and Tukiainen 2006; Obaidellah et al.
2019]. A key concept in studying gaze behaviour involves analysing
scan-paths, which depict the sequence of eye fixations on the stim-
ulus: "Sequential analysis of scan-paths is required to understand
the flow of visual attention on a task" [Goldberg and Helfman 2010,
p-228]. However, analysing individual scan-paths is only of limited
use for detecting shared patterns that can be generalised. In order
to derive common patterns between subjects, eye-tracking research
often involves clustering and aggregating multiple scan paths. As
[Goldberg and Helfman 2010, p.227] state, "methods to identify
similar scan-paths and aggregate multiple scan-paths have been
elusive". In this section, we describe several commonly used meth-
ods in this field. Many of these methods applied are based on the
concept of comparing string-based AOI (Area of Interest) sequences
[Goldberg and Helfman 2010]. A common metric for calculating the
distance between AOI sequences is the Levenshtein distance [Brandt
and Stark 1997; Levenshtein et al. 1966]. First, the AOIs are mapped
to an alphabet of single characters. Each AOI sequence is then
converted to a string by concatenating the sequence of characters.
The Levenshtein distance between two strings is then calculated
as the minimum number of substitutions, insertions and/or dele-
tions required to transform one string into the other [Goldberg and
Helfman 2010]. A more intricate approach to compare string-based
AOQI sequences is the use of sequence alignment techniques such as
pairwise or multiple sequence alignment (MSA) [Burch et al. 2018;
Khedher et al. 2018]. The aim of these techniques is to find common
sub-sequences in the scan paths. This "is a challenging task since
they are typically not equally temporally long, do not consist of
the same number of fixations, or do not lead along similar stimulus
regions” [Burch et al. 2018, p.1].

Hidden Markov Models can be fitted to multiple AOI sequences
to develop probability distributions for the AOI transitions [Gold-
berg and Helfman 2010]. However, these models do not take into
account the history of transitions and therefore are of limited use
in analysing scanning strategies among multiple participants.

Other approaches rely on spatial and temporal metrics such as
fixation duration [Eraslan et al. 2016], saccade length and saccade
direction to group subjects [Kumar et al. 2018].

A more recent approach to deal with the temporal differences in
participants’ scan paths is to use Dynamic Time Warping (DTW)
[Kasprowski and Harezlak 2019; Kumar et al. 2019; Sakoe and Chiba
1978]. DTW is an algorithm for measuring similarity between two
temporal sequences, which may vary in length and speed, by cal-
culating an optimal match between the two sequences, similar to
the Levensthein distance. For example, Kasprowski & Harezlak
[Kasprowski and Harezlak 2019] have used DTW to generate a

Identifying K-12 Students’ Approaches to Using Worked Examples for Epistemic Programming

warped time distance chart for comparing multiple scan paths based
on spatial properties. In the following, we describe a new approach,
using DTW on dwell times within intervals, to aggregate and visu-
alise the visual flow of multiple participants in order to ultimately
derive students’ approaches.

3 METHODOLOGY

3.1 Experiment Design

In order to identify and analyse different approaches regarding the
use of worked examples in the context of epistemic programming,
we conducted an eye-tracking experiment with K-12 students in
which the participants had to solve a programming task supported
by a worked example. The task was to choose their favourite sum-
mer holiday resort from three pre-selected cities. In order to come
to a decision, they were given different weather data from the three
locations (temperature, humidity, particulate matter and air pres-
sure), which they could analyse within a Jupyter notebook using
Python. In accordance with the epistemic programming approach,
the participants were free to carry out their analysis in terms of
choosing any data set, computing any visualisations and measures,
as well as using any kind of filters on the data with regard to their
individual preferences. However, they were asked to justify their
decision based on their analysis and their personal preferences.

The 26 participants enlisted for our experiment were drawn
from three K-12 computer science courses from grade 10. The par-
ticipants had already limited experience with the programming
language Python, as they had already programmed in Python in
class beforehand.

3.2 Material

The participants could conduct their analysis and write down their
decision in a prepared Jupyter notebook, containing information
about the task and the data sets provided as well as a map showing
the three pre-selected cities (see the right Jupyter notebook in
Figure 1b). Within the Jupyter notebook, they could write code into
code cells and were given a Markdown cell at the end of the Jupyter
notebook for documenting the most important findings and the
decision.

In order to support them in their intertwined cognitive and
programming-process, we prepared a worked example in form of a
computational essay on an analysis of the weather in London from
the previous year. The worked example contained information on
visualising data in a scatter plot and a box plot, filtering data (by
month and by time), and comparing data in a combined visualisation
(multiple scatter plots and multiple box plots). For each aspect,
a text cell with explanations of possible use cases and usage, a
code cell and a cell with the output from the code were given.
These cells were then used as Areas of Interests (AOIs) for the eye-
tracking experiment (see Figure 1a). The participants could explore
the worked example independently, orient themselves regarding
the methods (visualisations, filters) applied there and use parts of
the given code with regard to their individual endeavours. During
the experiment, the screen of the participants was divided into two
halves: While the worked example was shown on one half of the
screen, the other half contained the prepared Jupyter notebook

ETRA °24, June 04-07, 2024, Glasgow, United Kingdom

for the participants to conduct the data analysis and capture their
findings (see Figure 1b).

3.3 Data Collection & Analysis

We collected gaze data from the participants throughout the ex-
periment using JuGaze [Sparmann et al. 2023]. JuGaze is a tool for
conducting eye-tracking experiments in Jupyter notebooks, where
each cell is treated as an AOL During the experiment, JuGaze cap-
tured the position and size of each cell in the notebooks along
with relevant metadata (e.g. cell type, cell selected). For the eye-
tracking we used SMI REDn eye tracking devices set to 60 Hz. We
extracted fixations from the raw gaze data using the lHMM algo-
rithm [Salvucci and Goldberg 2000]. By mapping fixations to cell
geometries, we were then able to determine when and for how long
each cell was fixated. In order to compare individual approaches,
we divided each trial into intervals of 60 seconds to compare global
and local patterns in the approaches. By resampling the data into
fixed time intervals, we deliberately abstracted away from local
patterns, prioritising an overarching perspective that aligns with
our primary focus. We calculated the AOI dwell times for each
interval in each trial, resulting in a time series x = (x1,...,%p),
where n is the number of intervals in the respective trial. Each x; is
an m-dimensional vector

where m is the number of AOIs and x; j is the dwell time on the j-th
AOQl in the i-th interval. When represented in a mxn matrix, the time
series can be visualised as a heat-map, with one axis representing
time as a unit of intervals and the other axis representing the AOIs.
An example of such a heat-map can be seen in Figure 3. We then
applied Dynamic Time Warping (DTW) [Sakoe and Chiba 1978]
to calculate the pairwise distances between the participants’ time
series in order to compare their approaches. We used cosine as
the base metric for DTW as it is better suited for dealing with the
sparse vectors derived by the large number of AOIs. By using DTW
we were able to compare and cluster time series of different lengths
while preserving information about the overall order of cells visited.
In addition, it allows multiple trials to be aggregated using DTW
Barycenter Averaging (DBA) [Petitjean et al. 2011] to visualise
clusters and generalise the respective approaches. However, due to
a bug in the used version of JuGaze, in some cases, the output of the
user-generated cells was not captured by the tool. This only affected
cells created during the experiment and only occurred in a small
proportion (2 of 10) of the trials we examined. As a result, some
of the fixations on the visualisations created by the participants
were incorrectly mapped to the corresponding source code AOL
However, we did not omit the data for these AOIs, as these errors
appeared to have only a marginal effect on cluster composition and
may still be helpful in understanding what the participants were
doing.

In order to evaluate and compare the quality of the participants’
notebooks, the number of (combined) visualisations and filters
created was determined. Furthermore, we checked whether the
reasoning behind the decision was based on the participant’s results,

ETRA °24, June 04-07, 2024, Glasgow, United Kingdom

3.2 Boxplot Box Piot [Text]

In 715 fig = go.Figure() Box Plot [Code]
+ig.2dd_trace (go. Box (y=temp_london['valve'], name = ‘Tenperature in London'))
tig. show()

Box Plot [Oul]

Temperature in London

(a) Section of the worked example showing the AOIs (turquoise)
assigned to the Jupyter notebook cells.

Husing et al.

4 Datafiltering

41 Fitter by manth

(b) Arrangement of the students’ screen during the experiment: one
half shows the worked example (left), the other half shows the Jupyter
notebook for the students’ analysis and documentation (right).

Figure 1: Experiment setup and stimulus.

indicating that the participant had gained insights through the
programming process.

4 RESULTS

As described in section 3.3, we calculated pairwise DTW distances
for all trials based on the dwell times within each interval. Figure
2 shows the resulting hierarchical clusters based on the DTW dis-
tances using average linkage. We applied a distance threshold ¢ to
form flat clusters. The threshold value determines the number of
clusters: a lower value produces more clusters and vice versa. We
chose ¢t := 30, which resulted in 5 clusters, each containing from 2
to 13 participants. This was the maximum number of clusters that
could practically be visualised and compared side-by-side, allow-
ing us to differentiate between the different approaches as best as
possible within this limitation.

40

30 ~{-=--==d--=-—mmm e FEEEEE=T - -

20

DTW Distance

0
ORI A0 © DD DRP N DDA D XA DO Db

Participants

Figure 2: Agglomerative clustering of participants based
on their dynamic time warping distances. The clusters are
coloured based on the threshold ¢ := 30.

Figure 3 shows the aggregated approaches for each of the 5
clusters as a heat-map based on the DTW Barycenter Averaging.
The colour of the cells represents the calculated dwell time for the
corresponding interval. The duration of the aggregated clusters
varies from 31 minutes (cluster 2) to 53 minutes (cluster 4). In
addition, the results of the assessment of the participants’ notebooks
are shown in Table 1.

5 INTERPRETATION & DISCUSSION

Based on the heat map in Figure 3, we describe and interpret this
visualisation to give a general overview of the aggregated clus-
ters. Additionally, we refer to the evaluation of the participants’
notebooks, for which corresponding performance metrics were
documented in Table 1.

The two participants from cluster 1 seemed to have a reading
phase in the worked example, starting at the beginning of their
process and lasting approx. 10 minutes. After this, they again looked
into the parts of the worked example for creating scatter and box
plots as well as for filtering the data by month. At that point of
time, there are also longer dwell times on the cells with custom
code. In the very end (after around 28 minutes), the participants
apparently also have written down text, while looking into their
outputs. As it can be seen in the participants’ Jupyter notebooks,
one of them could not arrive at a final decision and only created
one visualisation. The other participant was able to apply a filter
(regarding specific months) and created a combined visualisation.

In the heat-map for cluster 2 (n = 2), three phases of scrolling
through the worked example can be recognised (at the beginning,
after approx. 10 minutes and after approx. 25 minutes). Additionally,
the dwell times on custom code increased throughout the process.
However, there were lower dwell times in the custom text cells.
Participants in cluster 2 apparently spent a lot of time reading the
task or looking at the map and little time on working on their code
or reading in the worked example. This also becomes apparent
from looking at their produced notebooks as one of them was not
capable of producing any visualisations and the other one did not
compare the data in a combined visualisation and did not use any
filters.

Identifying K-12 Students’ Approaches to Using Worked Examples for Epistemic Programming

Cluster 1 Cluster 2
[12, 16]

[14, 22]

Introduction [Text]

Scatter Plot [Text]

Scatter Plot [Code]

Scatter Plot [Out]

Box Plot [Text]

Box Plot [Code]

Box Plot [Out]

Filter Month [Text]

Filter Month [Code]

Scatter Plot Filter Month [Text]
Scatter Plot Filter Month [Code]
Scatter Plot Filter Month [Out]
Box Plot Filter Month [Code]

Box Plot Filter Month [Out]
Interpretation Filter Month [Text]
Filter Time [Text]

Filter Time [Code]

Box Plot Filter Time [Code]

Box Plot Filter Time [Out]
Interpretation Filter Time [Text]
Data Comp. [Text]

Scatter Plot Data Comp. [Code]
Scatter Plot Data Comp. [Out]
Box Plot Data Comp. [Code]

Box Plot Data Comp. [Out]
Interpretation Data Comp. [Text]
Paderborn Filter Month [Code]
Scatter Comp. Filter Month [Code]
Scatter Comp. Filter Month [Out]
Box Comp. Filter Month [Code]
Box Comp. Filter Month [Out]
Interpretation Comp. [Text]
Conclusion [Text]

Task Meta Information [Text]
Description Map [Out]
Task [Text]

Computational Custom [Code]
Notebook Custom [Out]
Custom [Text]

Worked Example

mm II1[JI

ETRA °24, June 04-07, 2024, Glasgow, United Kingdom

Cluster 3
[1, 6,10, 11, 13, 15, 18, Cluster 4 Cluster 5
19, 20, 21, 23, 24, 26] [3,4,7,8,17] [0, 2, 5,9, 25]

Interval [min]

0 2

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Figure 3: Aggregated clusters using DTW Barycenter Averaging (DBA). Values were plotted on a non-linear colour scale using
the square root of the actual value. This was done to increase contrast also for cells that were only briefly fixated.

Table 1: Performance metrics for each cluster, including the number of participants (n), the mean trial duration and the
number of participants from each cluster who produced at least one basic visualisation (scatter plot, bar plot), one combined
visualisation (multiple traces), applied a data filter, and based their reasoning on their results.

n Duration [min] Basic Combined Filter Reasoning based on
Cluster M SD visualisation visualisation results
1 2 3195 0.43 2 (100%) 1 (50%) 1(50%) 1(50%)
2 2 24.66 8.89 1(50%) 0 (0%) 0(0%) 2(100%)
3 13 2626 9.09 13 (100%) 9 (69%) 2(15%) 10 (77%)
4 5 44.83 9.64 5 (100%) 5 (100%) 5(100%) 5 (100%)
5 5 4259 7.89 5 (100%) 4 (80%) 3(60%) 4 (80%)

For cluster 3 (n = 13), two linear reading phases can be identified
in the heat-map - one directly at the beginning, which appears to be

merely a scanning phase, and the other one after approx. 30 minutes.

There were longer dwell times in the sections for the scatter plot
as well as less intense, but also longer phases in the sections for
the box plot, filter month, filter time and data comparison. The

participants in this cluster seemed to have spent more time on these
individual aspects. Regarding dwell times on custom code, there
were additionally longer intense phases beginning after approx. 8
minutes. Hence, the participants appear to have spend a lot of time
working on and reviewing their code. Additionally, after approx.
40 minutes there were parallel or integrated phases with higher

ETRA °24, June 04-07, 2024, Glasgow, United Kingdom

dwell times in the custom output and text cells. Regarding their
products, most participants arrived at a decision that was justified
on the basis of the previously obtained results. Additionally, most
of them were able to create a combined visualisation for comparing
the data from the different cities.

Participants in cluster 4 (n = 5) read through the worked example
in a linear order, while simultaneously looking at their own code
from the 5th minute onwards. However, there seemed to be a harsh
cut after approx. 35 minutes, when they shifted their attention
towards the custom output and the custom markdown text. Addi-
tionally, it is noticeable that the participants from this cluster did
not or only shortly revisit the cells in the worked example that they
had visited before. In their Jupyter notebook, all participants from
cluster 4 created at least three visualisations including a combined
visualisation, applied at least one filter and were able to arrive at a
decision, connected with insights from their programming results.

The participants from cluster 5 (n = 5) showed a similar be-
haviour to the participants from cluster 4. While the heat-map
implies that they also had one rather short linear run-through of
the worked example and afterwards looked into the worked ex-
ample and their own code cells simultaneously (especially approx.
between minutes 12 and 38), they apparently looked into their cus-
tom code more intensively after approx. 25 minutes. Compared with
cluster 4, they intensively looked into their own output and text,
while they were still looking into their custom code. However, they
did not look into their own custom text as intensively. Nevertheless,
each participant from this cluster created at least two visualisations,
while three of them also applied at least one filter. All but one par-
ticipant created a combined visualisation and connected the final
decision with insights gained from the programming process.

Apparently, the participants exhibited diverse strategies during
their programming processes. Across all clusters, participants en-
gaged in at least one "scanning" phase of the worked example in
the beginning of their process.

While clusters 1 and 4 overall exhibited one rather linear navi-
gation through the individual sections, the participants from the
other clusters apparently had multiple walk-troughs (cluster 2) or
focused on specific aspects, not necessarily in the sequence, shown
in the worked example (cluster 3 and 5). Additionally, while the
participants from clusters 1, 2, 3 and 5 apparently revisited certain
cells, participants from cluster 4 seem to have only rarely returned
to cells they had already visited, so they probably completed their
programming process regarding the respective aspect first, before
moving on.

Furthermore, variations in code-related behaviours were ob-
served. For instance, participants in clusters 1, 2, and 5 predomi-
nantly began coding activities after a linear walk-through, whereas
those in clusters 3 and 4 demonstrated earlier and more intertwined
coding, while simultaneously looking into the worked example.

Also regarding participants’ consideration of their own output
and text cells, diverse behaviours could be identified. In particular, it
is noticeable that in cluster 4, the phases of writing code and writing
text were apparently separated, which does not seem to be the case
in the other clusters. Regarding the review of the students’ Jupyter
notebooks (as it can be seen from Table 1), cluster 4 emerged as the
most successful. Looking into the heat-map in Figure 3, participants
from this cluster seemingly demonstrated a focused examination of

Husing et al.

specific sections within the provided worked example, which they
might deemed helpful for their epistemic programming endeav-
ours. This targeted approach mirrors the described expert-strategies
described by Schoenfeld [Schoenfeld 2016], which Reiss & Renkl
[Reiss and Renkl 2002] took up with the idea of heuristic worked
examples. This, in turn suggests that participants in cluster 4 effec-
tively leveraged heuristic worked examples to navigate the problem
space and inform their decision-making processes, which might be
characteristic for epistemic programming.

Based on the results, our method of clustering and aggregating
scan paths using DTW and DBA appears promising, especially for
smaller cluster sizes, as it provides a visualisation of the aggregated
clusters that is both meaningful and easy to interpret. We believe
that it is particularly useful for long-running experiments to be able
to distinguish between different process stages and to determine
the order in which they occur. However, as information about
transitions is partially lost, it is not useful for detecting local scan
patterns. In such a case, it is recommended to examine the AOI
sequences and use techniques such as multiple sequence alignment
to compare the flow of attention.

6 LIMITATIONS

As stated in section 3.3, some of the participants’ fixations on the
output were incorrectly mapped to the corresponding code cells
due to a bug in the version of JuGaze that was used. However, we
assume that this did not affect the results to a significant extent.
Additionally, the data of some participants apart from the data, we
used here, were recorded incorrectly. However, we were still able
to retrieve complete data sets for 26 participants. The resulting
clusters vary significantly in size, spanning from 2 to 13 partici-
pants. As more participants are added to the clusters, they tend
to become increasingly blurred and the sequence length increases,
potentially posing challenges for compatibility. Consequently, the
generalisability of the results is limited. Finally, it should be noted
that while DTW takes into account time shifts and different speeds
between participants, it is not suitable for detecting recurring gaze
patterns (e.g. loops).

7 CONCLUSION & FUTURE WORK

The aim of this study was to identify different approaches of novices
in using worked examples in the context of epistemic programming
endeavours. For this purpose, we used Dynamic Time Warping to
cluster and aggregate individual scan paths, which allowed us to
identify common gaze patterns between participants.

We found that there were different approaches to the use of the
worked examples in terms of the order in which the cells were fix-
ated and the way in which the programming was interwoven with
the utilisation of the worked example. Drawing from our analysis,
we hypothesise that students might use worked examples in order to
gain an initial idea of possible steps and actions as well as regarding
amore detailed examination of these later on. Concurrent reference
to the worked example throughout the programming process seems
especially effective (cf. cluster 4), where students can obtain infor-
mation about the current aspect they are working on. Additionally,
we argue that certain approaches show characteristics of epistemic

Identifying K-12 Students’ Approaches to Using Worked Examples for Epistemic Programming

programming practices, involving a selective adaptation of the pro-
vided code snippets based on the individual interest, rather than a
mere reproduction of the worked example. This also includes an
intertwined programming and reading process. However, we do
not know whether this is because these participants’ approach was
better suited to the given setting, or because it was different due
to differences in their programming skills. For a future study to
address this question, it might be useful to develop an instrument
to determine the successful adoption of epistemic programming
regarding the exploration of individual areas of interest.

Generally, future findings could be relevant for designing worked
examples, as they indicate different types of learners that need to
be considered. In addition, students could also be given guidance
on utilising worked examples by explicitly teaching "successful”
approaches. Overall, this study has already been able to identify
different approaches regarding the utilisation of worked examples
in epistemic programming endeavours. The methodology used
additionally provides a basis for concretising and identifying further
approaches in the future.

ACKNOWLEDGMENTS

This work was created as part of the ProDaBi project (https://www.
prodabi.de), funded by the Deutsche Telekom Stiftung and as part
of the CDEC project (https://cdec.io), funded by the Bundesminis-
terium fiir Wirtschaft und Klimaschutz.

REFERENCES

Robert K. Atkinson, Sharon J. Derry, Alexander Renkl, and Donald Wortham. 2000.
Learning from Examples: Instructional Principles from the Worked Examples
Research. Review of Educational Research 70, 2 (June 2000), 181-214. https:
//doi.org/10/csm67w

Roman Bednarik and Markku Tukiainen. 2006. An Eye-Tracking Methodology for
Characterizing Program Comprehension Processes. In Proceedings of the 2006 Sym-
posium on Eye Tracking Research & Applications - ETRA "06. ACM Press, San Diego,
California, 125. https://doi.org/10.1145/1117309.1117356

Stephan A. Brandt and Lawrence W. Stark. 1997. Spontaneous Eye Movements during
Visual Imagery Reflect the Content of the Visual Scene. Journal of Cognitive
Neuroscience 9, 1 (1997), 27-38. https://doi.org/10.1162/jocn.1997.9.1.27

Michael Burch, Kuno Kurzhals, Niklas Kleinhans, and Daniel Weiskopf. 2018. EyeMSA:
Exploring Eye Movement Data with Pairwise and Multiple Sequence Alignment. In
Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications.
ACM, Warsaw Poland, 1-5. https://doi.org/10.1145/3204493.3204565

Teresa Busjahn, Carsten Schulte, Bonita Sharif, Simon, Andrew Begel, Michael Hansen,
Roman Bednarik, Paul Orlov, Petri Thantola, Galina Shchekotova, and Maria
Antropova. 2014. Eye tracking in computing education. In Proceedings of the tenth
annual conference on International computing education research. ACM, Glasgow
Scotland United Kingdom, 3-10. https://doi.org/10.1145/2632320.2632344

Andrea A. DiSessa. 2000. Changing minds: computers, learning, and literacy. MIT Press,
Cambridge, Mass.

Sukru Eraslan, Yeliz Yesilada, and Simon Harper. 2016. Scanpath Trend Analysis on
Web Pages: Clustering Eye Tracking Scanpaths. ACM Transactions on the Web 10, 4
(Dec. 2016), 1-35. https://doi.org/10.1145/2970818

Joseph H. Goldberg and Jonathan I. Helfman. 2010. Scanpath Clustering and Aggrega-
tion. In Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications -
ETRA °10. ACM Press, Austin, Texas, 227. https://doi.org/10.1145/1743666.1743721

Sven Hiising, Carsten Schulte, Soren Sparmann, and Mario Bolte. 2024. Using Worked
Examples for Engaging in Epistemic Programming Projects. In Proceedings of the
55th ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE 2024).
ACM, New York, NY, USA. https://doi.org/10.1145/3626252.3630961

Sven Hiising, Carsten Schulte, and Felix Winkelnkemper. 2023. Epistemic Programming.
In Computer Science Education: Perspectives on Teaching and Learning in School (2
ed.), Sue Sentance, Erik Barendsen, Nicol R. Howard, and Carsten Schulte (Eds.).
Bloomsbury Academic, London, 291-304. http://dx.doi.org/10.5040/9781350296947.
ch-022

Marcel Adam Just and Patricia A Carpenter. 1976. Eye fixations and cognitive pro-
cesses. Cognitive Psychology 8, 4 (Oct. 1976), 441-480. https://doi.org/10.1016/0010-
0285(76)90015-3

ETRA °24, June 04-07, 2024, Glasgow, United Kingdom

Pawel Kasprowski and Katarzyna Harezlak. 2019. Using Mutual Distance Plot and
Warped Time Distance Chart to Compare Scan-Paths of Multiple Observers. In
Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications.
ACM, Denver Colorado, 1-5. https://doi.org/10.1145/3317958.3318226

A Ben Khedher, Imene Jraidi, and Claude Frasson. 2018. Local sequence alignment for
scan path similarity assessment. International Journal of Information and Education
Technology 8, 7 (2018), 482-490.

Ayush Kumar, Rudolf Netzel, Michael Burch, Daniel Weiskopf, and Klaus Mueller. 2018.
Visual Multi-Metric Grouping of Eye-Tracking Data. Journal of Eye Movement
Research 10, 5 (Feb. 2018). https://doi.org/10.16910/jemr.10.5.10

Ayush Kumar, Neil Timmermans, Michael Burch, and Klaus Mueller. 2019. Clustered
Eye Movement Similarity Matrices. In Proceedings of the 11th ACM Symposium
on Eye Tracking Research & Applications. ACM, Denver Colorado, 1-9. https:
//doi.org/10.1145/3317958.3319811

Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce
Malyn-Smith, and Linda Werner. 2011. Computational thinking for youth in practice.
ACM Inroads 2, 1 (Feb. 2011), 32-37. https://doi.org/10/ggdnzr

Vladimir I Levenshtein et al. 1966. Binary Codes Capable of Correcting Deletions,
Insertions, and Reversals. In Soviet Physics Doklady, Vol. 10. Soviet Union, 707-710.

Yvonne G. Mulder, Ard W. Lazonder, and Ton De Jong. 2014. Using heuristic worked
examples to promote inquiry-based learning. Learning and Instruction 29 (Feb.
2014), 56-64. https://doi.org/10.1016/j.learninstruc.2013.08.001

Kasia Muldner, Jay Jennings, and Veronica Chiarelli. 2023. A Review of Worked
Examples in Programming Activities. ACM Transactions on Computing Education
23,1 (March 2023), 1-35. https://doi.org/10.1145/3560266

Unaizah Obaidellah, Mohammed Al Haek, and Peter C.-H. Cheng. 2019. A Survey on
the Usage of Eye-Tracking in Computer Programming. Comput. Surveys 51, 1 (Jan.
2019), 1-58. https://doi.org/10.1145/3145904

Tor Ole B. Odden, Devin W. Silvia, and Anders Malthe-Sgrenssen. 2022. Using
computational essays to foster disciplinary epistemic agency in undergraduate
science. Journal of Research in Science Teaching 60, 5 (2022), 937-977. https:
//doi.org/10.1002/tea.21821

Fernando Perez and Brian E. Granger. 2015. Project Jupyter: Computational Narratives
as the Engine of Collaborative Data Science. https://blog.jupyter.org/project-
jupyter-computational- narratives- as-the-engine- of-collaborative- data-science-
2b5fb94c3c58

Francois Petitjean, Alain Ketterlin, and Pierre Gancarski. 2011. A Global Averaging
Method for Dynamic Time Warping, with Applications to Clustering. Pattern
recognition 44, 3 (2011), 678-693. https://doi.org/10.1016/j.patcog.2010.09.013

Siti Soraya Abdul Rahman and Benedict du Boulay. 2010. Learning programming via
worked-examples. PPIG-WIP, Dundee 2010 (2010), 1-6.

Kristina Reiss and Alexander Renkl. 2002. Learning to prove: The idea of heuristic
examples. Zentralblatt fiir Didaktik der Mathematik 34, 1 (Feb. 2002), 29-35. https:
//doi.org/10.1007/BF02655690

Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and Teaching
Programming: A Review and Discussion. Computer Science Education 13, 2 (June
2003), 137-172. https://doi.org/10.1076/csed.13.2.137.14200

H. Sakoe and S. Chiba. 1978. Dynamic Programming Algorithm Optimization for
Spoken Word Recognition. IEEE Transactions on Acoustics, Speech, and Signal
Processing 26, 1 (1978), 43-49. https://doi.org/10.1109/TASSP.1978.1163055

Dario D. Salvucci and Joseph H. Goldberg. 2000. Identifying Fixations and Saccades in
Eye-Tracking Protocols. In Proceedings of the Symposium on Eye Tracking Research
& Applications - ETRA *00. ACM Press, Palm Beach Gardens, Florida, United States,
71-78. https://doi.org/10.1145/355017.355028

Alan H. Schoenfeld. 2016. Learning to Think Mathematically: Problem Solving,
Metacognition, and Sense Making in Mathematics (Reprint). Journal of Educa-
tion 196, 2 (April 2016), 1-38. https://doi.org/10.1177/002205741619600202

Séren Sparmann, Sven Hiising, and Carsten Schulte. 2023. JuGaze: A Cell-based
Eye Tracking and Logging Tool for Jupyter Notebooks. In Proceedings of the 23rd
Koli Calling International Conference on Computing Education Research. ACM, Koli
Finland, 1-11. https://doi.org/10.1145/3631802.3631824

John Sweller, Paul Ayres, and Slava Kalyuga. 2011. Cognitive Load Theory. Springer
New York, New York, NY. https://doi.org/10.1007/978-1-4419-8126-4

John Sweller and Graham A. Cooper. 1985. The Use of Worked Examples as a Substitute
for Problem Solving in Learning Algebra. Cognition and Instruction 2, 1 (March
1985), 59-89. https://doi.org/10.1207/s1532690xci0201_3

John Sweller, Jeroen J. G. van Merrienboer, and Fred G. W. C. Paas. 1998. Cognitive
architecture and instructional design. Educational Psychology Review 10, 3 (1998),
251-296. https://doi.org/10.1023/A:1022193728205

Uri Wilensky, Corey E. Brady, and Michael S. Horn. 2014. Fostering computational
literacy in science classrooms. Commun. ACM 57, 8 (Aug. 2014), 24-28. https:
//doi.org/10/gqvébn

Stephan Wolfram. 2017. What Is a Computational Essay?
stephenwolfram.com/2017/11/what-is-a-computational-essay/

https://writings.

https://www.prodabi.de
https://www.prodabi.de
https://cdec.io
https://doi.org/10/csm67w
https://doi.org/10/csm67w
https://doi.org/10.1145/1117309.1117356
https://doi.org/10.1162/jocn.1997.9.1.27
https://doi.org/10.1145/3204493.3204565
https://doi.org/10.1145/2632320.2632344
https://doi.org/10.1145/2970818
https://doi.org/10.1145/1743666.1743721
https://doi.org/10.1145/3626252.3630961
http://dx.doi.org/10.5040/9781350296947.ch-022
http://dx.doi.org/10.5040/9781350296947.ch-022
https://doi.org/10.1016/0010-0285(76)90015-3
https://doi.org/10.1016/0010-0285(76)90015-3
https://doi.org/10.1145/3317958.3318226
https://doi.org/10.16910/jemr.10.5.10
https://doi.org/10.1145/3317958.3319811
https://doi.org/10.1145/3317958.3319811
https://doi.org/10/ggdnzr
https://doi.org/10.1016/j.learninstruc.2013.08.001
https://doi.org/10.1145/3560266
https://doi.org/10.1145/3145904
https://doi.org/10.1002/tea.21821
https://doi.org/10.1002/tea.21821
https://blog.jupyter.org/project-jupyter-computational-narratives-as-the-engine-of-collaborative-data-science-2b5fb94c3c58
https://blog.jupyter.org/project-jupyter-computational-narratives-as-the-engine-of-collaborative-data-science-2b5fb94c3c58
https://blog.jupyter.org/project-jupyter-computational-narratives-as-the-engine-of-collaborative-data-science-2b5fb94c3c58
https://doi.org/10.1016/j.patcog.2010.09.013
https://doi.org/10.1007/BF02655690
https://doi.org/10.1007/BF02655690
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1145/355017.355028
https://doi.org/10.1177/002205741619600202
https://doi.org/10.1145/3631802.3631824
https://doi.org/10.1007/978-1-4419-8126-4
https://doi.org/10.1207/s1532690xci0201_3
https://doi.org/10.1023/A:1022193728205
https://doi.org/10/gqv6bn
https://doi.org/10/gqv6bn
https://writings.stephenwolfram.com/2017/11/what-is-a-computational-essay/
https://writings.stephenwolfram.com/2017/11/what-is-a-computational-essay/

	Abstract
	1 Introduction
	2 Background
	2.1 Worked Examples to Support Epistemic Programming Processes
	2.2 Analysing Programming Processes using Eye Tracking

	3 Methodology
	3.1 Experiment Design
	3.2 Material
	3.3 Data Collection & Analysis

	4 Results
	5 Interpretation & Discussion
	6 Limitations
	7 Conclusion & Future Work
	Acknowledgments
	References

