The Tabular Foundation Model TabPFN
Outperforms Specialized Time Series
Forecasting Models Based on Simple Features
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With only simple features, TabPFN-TS matches state-of-the-art Chronos-Large (65x larger) forecasting performance.

We demonstrate that the tabular foundation model TabPFN, when paired with minimal featurization, can perform zero-shot forecasting. Its performance on point

forecasting matches or even slightly outperforms state-of-the-art methods.

Methodology

We frame time-series forecasting as a tabular regression problem, where each
time series is treated as an independent table.
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Figure 1: Overview of TabPFN-TS.

For each time series, we transform the sequence into a table, alongside with some
features as new columns. This table is fed to TabPFN to perform regression on all future
time steps (i.e. forecasting) in a single iteration — multi-step-ahead forecasting.

Featurization - we derive features directly from the timestamps, excluding lagged
and autoregressive features (e.g. moving averages, lag terms).

Age Feature x Calendar Features in Sine and Cosine Encodings

month-of-the-year week-of-the-year day-of-the-year
Timestamp | target age year : . . . . .
(sine) (cosine) (sine) (cosine) (sine) (cosine)
2023-07-22 300 1 2023 0.551 0.835 0.545 0.838 0.528 0.849
2023-07-23 305 2 2023 0.551 0.835 0.545 0.838 0.530 0.848
2023-07-24 308 3 2023 0.551 0.835 0.545 0.838 0.533 0.846

Figure 2: Featurization.

Results: TabPFN-TS matches Chronos-Large!

We evaluate the point forecast accuracy across 24 common datasets.

We also aggregate the scores based on
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Figure 3: Point forecasting performance of various models. 95% confidence interval included. Lower is better.
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Figure 7: Visualization of TabPFN-TS’s predictions on M4 Hourly and Tourism Monthly.

Takeaways

An evidence for TabPFN, a tabular foundation model, being an incumbent for
time series forecasting with minimal feature engineering.

A hint towards the broader potential of tabular foundation models in
advancing time series forecasting.
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Figure 8: Visualization of TabPFN-TS’s predictions on Covid Deaths and CIF 2016.
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