EQUATION = 0
Solve for x.
quadraticRoots(A, B, C)
WRONGS[0]WRONGS[1]WRONGS[2]WRONGS[3]WRONGS[4]Get the equation into the form ax^2 + bx + c = 0:
\qquadF.text() = 0
TERMS[N1] + TERMS[N2] = NEGTERMS[N3]
Solve for x.
Get the equation into the form ax^2 + bx + c = 0:
\qquadTERMS[N1] + TERMS[N2] + TERMS[N3] = 0
\qquadF.text() = 0
TERMS[N1] = NEGTERMS[N2] + NEGTERMS[N3]
Solve for x.
Get the equation into the form ax^2 + bx + c = 0:
\qquad \begin{eqnarray}
TERMS[N1] + TERMS[N2] &=& NEGTERMS[N3] \\
TERMS[N1] + TERMS[N2] + TERMS[N3] &=& 0 \\
F.text() &=& 0
\end{eqnarray}
TERMS1[N1] + TERMS1[N2] + TERMS1[N3] = coefficient(A2) + "x^2"
Solve for x.
Get the equation into the form ax^2 + bx + c = 0:
\qquad \begin{eqnarray}
TERMS2[N1] + TERMS2[N2] + TERMS2[N3] &=& 0 \\
F.text() &=& 0
\end{eqnarray}
TERMS1[N1] + TERMS1[N2] + TERMS1[N3] = coefficient(B2) + "x"
Solve for x.
TERMS1[N1] + TERMS1[N2] + TERMS1[N3] = C2
Solve for x.
Use the quadratic formula to solve ax^2 + bx + c = 0:
\qquad x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\qquad a = A, b = B, c = C
\qquad x = \dfrac{-negParens(B) \pm \sqrt{expr(["^", B, 2]) -
4 \cdot A \cdot C}}{2 \cdot A}
\qquad x = \dfrac{-B \pm \sqrt{RADICAND}}{2 * A}
\qquad x = \dfrac{-B \pm formattedSquareRootOf(RADICAND)}{2 * A}
\qquad quadraticRoots(A, B, C)