Triangle A_NAME is similar to triangle B_NAME.
Solve for X.
X =
Similar triangles have proportional sides.
Therefore, we can set up equivalent proportions and solve for X.
\dfrac{\red{B_LABELS[SOLUTION_INDEX]}}{\blue{A_SIDES[SOLUTION_INDEX]}} = \dfrac{\red{B_LABELS[PROP_INDEX]}}{\blue{A_SIDES[PROP_INDEX]}}
Note: As each corresponding \dfrac{\red{side}}{\blue{side}} proportion is equivalent, you could use the other sides (i.e., \dfrac{\red{B_LABELS[SOLUTION_INDEX]}}{\blue{A_SIDES[SOLUTION_INDEX]}} = \dfrac{\red{B_LABELS[ALTERNATE_INDEX]}}{\blue{A_SIDES[ALTERNATE_INDEX]}})
Reduce the proportion on the right hand side.
\dfrac{\red{B_LABELS[SOLUTION_INDEX]}}{\blue{A_SIDES[SOLUTION_INDEX]}} = \cancel{\dfrac{\red{B_LABELS[PROP_INDEX]}}{\blue{A_SIDES[PROP_INDEX]}}}{\green{fractionReduce(B_LABELS[PROP_INDEX], A_SIDES[PROP_INDEX])}}
Multiply each side by A_SIDES[SOLUTION_INDEX] and simplify.
\cancel{A_SIDES[SOLUTION_INDEX]} \times \dfrac{\red{B_LABELS[SOLUTION_INDEX]}}{\cancel{\blue{A_SIDES[SOLUTION_INDEX]}}} = \green{fractionReduce(B_LABELS[PROP_INDEX], A_SIDES[PROP_INDEX])} \times A_SIDES[SOLUTION_INDEX]
\red{X} is equal to SOLUTION.